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The first highly accurate solutions for the resistance tensor of an oblate or prolate 
spheroid moving near a planar wall obtained by Hsu & Ganatos (1989) are used to 
compute the translational and angular velocities and trajectories of a neutrally buoyant 
spheroid in shear flow and the gravitational settling motion of a non-neutrally buoyant 
spheroid adjacent to an inclined plane. The neutrally buoyant spheroid in shear flow 
undergoes a periodical motion toward and away from the wall as it continually tumbles 
forward. For some orientation angles it is found that the wall actually enhances the 
angular velocity of the particle. For certain inclinations a spheroid settling under 
gravity near an inclined plane reaches an equilibrium position, after which it translates 
parallel to the wall without rotation. 

1. Introduction 
The creeping motion of a non-spherical particle in a viscous fluid adjacent to a 

planar boundary has been a problem of long standing interest. Some biological and 
engineering applications of the theory include modelling the flow of red blood cells in 
the microcirculation, study of the diffusive and convective transport of non-spherical 
macromolecules or solute particles in intercellular clefts or through porous membranes, 
and determination of the trajectory of a contaminant particle in a lubricating bearing 
or in the laminar sublayer in the vicinity of a turbine blade. 

This classic low-Reynolds-number flow problem has previously been studied by a 
number of investigators using various techniques. A far-field solution for the motion 
of a spheroid at an arbitrary angle of attack adjacent to a planar wall was obtained by 
Wakiya (1959) using the method of reflections. More recently, using the method of 
distributing internal singularities, Yang & Leal (1983, 1984) studied the motion of a 
slender body near a flat fluid-fluid interface (the interface behaves like a rigid wall in 
the limit as the viscosity of the fluid not containing the body becomes large) and 
Dabros (1985) obtained the angular velocity of a neutrally buoyant prolate spheroid 
in shear flow adjacent to a planar wall. 

Most recently, the boundary integral technique was used by Hsu & Ganatos (1989) 
to obtain solutions for the resistance tensor for any arbitrary body of revolution 
tumbling adjacent to a planar wall at low Reynolds number. The force and torque were 
accurately computed for an oblate or prolate spheroid, a torus and a biconcave shaped 
disk translating parallel or perpendicular to the wall, rotating about an axis parallel to 
the wall, or rigidly held in place in a shear flow. The key features of these solutions are 
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that the no-slip boundary conditions are satisfied exactly along the planar boundary by 
using Blake’s (1971) solution for the flow induced by a point force (stokeslet) adjacent 
to a planar boundary as the kernel function in the integral formulation, a double 
Fourier-Legendre series is used to describe the unknown stress distribution on the 
particle surface and the unknown coefficients contained in this series are determined by 
satisfying the no-slip boundary conditions at discrete points on the particle surface 
using a boundary collocation technique. The accuracy of the solutions has been tested 
by comparison with the exact bipolar coordinate solutions of Brenner (1961) for the 
motion of a sphere perpendicular to the wall and Goldman, Cox & Brenner (1967a, b) 
for a sphere translating parallel to a wall, rotating adjacent to a wall or rigidly held in 
place in shear flow. The solutions obtained by the boundary integral method were 
found to be in very good agreement with the exact solutions down to a gap width of 
a tenth of a sphere radius. On the other hand, it was found that the solutions of Wakiya 
(1959) obtained by the method of reflections are accurate only when the spheroid-wall 
distance is at least five times the semi-major axis of the spheriod. 

For the motion of a sphere near a planar wall, some of the elements of the resistance 
tensor are identically zero, such as the coefficients which give the force perpendicular 
to the wall arising from translatory motion of the particle parallel to the wall or 
rotation about an axis parallel to the wall. However, in general, these forces are not 
zero for a spheroid. The hydrodynamic force and torque on a spheroid depend strongly 
on its orientation relative to the wall. This characteristic feature complicates the 
motion of a spheroid adjacent to a plane. 

In this paper we consider only motion where the axis of symmetry of the body lies 
in a plane perpendicular to the plane of the wall and the fluid motion is symmetric 
about this plane. Jeffery (1922) has shown that for unbounded flow in the zero 
Reynolds number limit, this type of motion is neutrally stable for both oblate and 
prolate spheroids. This may also be expected to be the case in the presence of the wall. 
Thus both oblate and prolate spheroids are considered in the present study. 

In Hsu & Ganatos (1989) it was shown that the force and torque experienced by an 
oblate spheroid having an aspect ratio e = 0.5 in the vicinity of a planar wall was 
remarkably similar to the force and torque experienced by a torus or a biconcave 
shaped disk having the same aspect ratio. We would therefore expect that many of the 
predictions for the motion of an oblate spheroid to be presented in the present paper 
are equally applicable for a torus or a biconcave shaped disk, at least qualitatively. 

In the present work, strong-interaction solutions are presented for the zero-drag and 
gravitational motion of a spheroid adjacent to an inclined planar boundary. The zero- 
drag motions are of interest in various applications where dispersed small particles are 
carried along by the fluid such as red blood cells in the microcirculation or contaminant 
particles in a lubricating bearing. The gravitational motion solutions are of interest in 
studies of sedimentation and resuspension phenomena. The paper is presented in four 
sections. Section 2 contains the formulation relating the force and torque acting on the 
particle in quasi-steady motion near a planar wall to the fluid and particle velocities. 
In 53, solutions are presented for the zero-drag motion of a spheroid in shear flow next 
to a planar wall. Section 4 contains solutions for the velocities and trajectories of a 
spheroid settling under gravity next to an inclined plane. Finally, $ 5  contains some 
concluding remarks on applicability of the solution procedure to some closely related 
problems. 
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FIGURE 1. Geometry of planar motion of a spheroid adjacent to a wall. 

2. General motion of a spheroid adjacent to a planar wall 
Consider the motion of a spheroid adjacent to a planar wall as shown in figure 1. The 

spheroid has a half-length a and radius b. It is spaced at a distance H from the wall 
and has an orientation angle 01 relative to the wall. The spheroid is translating in 
the (xl, x,)-plane with velocity U, which has components U, and U,, and rotating about 
the x2-axis with angular velocity o. A shear flow Urn = Sx, may be present in the 
x,-direction. 

In the zero Reynolds number limit the fluid velocity V must satisfy the creeping flow 
equations 

p V V =  wp, v *  v =  0, (2.1 a b)  

subject to the boundary conditions 

V = w x pf V, ( 2 . 2 ~ )  

v=o at the wall, (2.2b) 
at the particle surface, 

V = Urn, p = 0 at infinity, (2 .24  

where p is the position vector whose origin is at the particle centre. 
It was shown in Hsu & Ganatos (1989) that the force and torque acting on a spheroid 

whose axis of symmetry lies in a plane perpendicular to the wall in planar symmetric 
flow may be expressed using twelve resistance coefficients as follows: 

Here 1;1 and 4 are the force components in the x,- and x,-directions, respectively, T,  
is the torque on the spheroid and c is the semi-major axis given by c = b for an oblate 
spheroid and c = a for a prolate spheroid. The twelve resistance coefficients depend on 
the aspect ratio t: defined as a /b  for an oblate spheroid and b/a  for a prolate spheroid 
(such that 0 < 6 < 1 in both cases), the separation distance H / c  and the orientation 
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FIGURE 2. The slip velocity of a neutrally buoyant spheroid with B = 0.5 in shear flow; 
-, oblate spheroid; ---, prolate spheroid. 

angle relative to the wall a. Of the twelve resistance coefficients three pairs are related 
according to the reciprocity relations (Brenner 1964) : 

Ft. 1 = Fi1, F: = $T$, F i  = gT2. (2.4 U-C) 

The nine independent force and torque coefficients have been computed to a high 
degree of accuracy using the boundary integral method by Hsu & Ganatos (1989). 
Therefore if the force and torque on the spheroid are prescribed, the system of linear 
equations (2.3) may be solved for the unknown velocity components U,, U! and w .  We 
now consider two special cases, the zero-drag motion of a spheroid adjacent to a wall 
and the gravitational settling motion of a spheroid in the vicinity of an inclined plane. 

3. Zero-drag motion of a spheroid in shear flow 
In this section we consider the motion of a neutrally buoyant spheroid in shear flow 

adjacent to a planar wall. From (2.3) the conditions of zero drag and zero torque 
require 

F? U,  +FF q+bFp+ H F f S  = 0, (3 .1~)  

F ~ I  U,+ F2 U,+bF,'-w+ H F i S  = 0, 

T2  U, + T 2  V,+ bTge+$bTi S = 0. 

(3.1 b) 
(3.1 c) 

Simultaneous solution of these three linear equations gives the three velocity 
components of the spheroid U,, U, and w. Solutions for an oblate or prolate spheroid 
having aspect ratio 6 = 0.5 are presented as functions of particle orientation a and 
particle-to-wall spacing H / c  in figures 2-4. The velocity component U, and angular 
velocity w are even functions of a, while the velocity component LL is an odd function 
of a. As expected from symmetry, all velocity components have a periodicity of 180" 
Therefore they are plotted only in the range between 0" and 90". 

For the velocity component U,, the quantity of greatest interest is the local slip 
velocity U, of the spheroid centre relative to the incoming fluid velocity Urn defined by 

C' ,=U,-U,=U,-HS.  (3.2) 
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FIGURE 3. The velocity component perpendicular to the wall of a neutrally buoyant spheroid with 
B = 0.5 in shear flow; -, oblate spheroid; ---, prolate spheroid. 

Figure 2 shows the slip velocity as a function of a at constant H / c  for an oblate or 
prolate spheroid with 8 = 0.5. The slip velocity is negative for all orientation angles and 
separation distances, indicating that an oblate or prolate spheroid always lags the fluid 
in shear flow. For a given separation distance the oblate spheroid experiences minimum 
slip at an orientation angle CL = 90" while the prolate spheroid experiences minimum 
slip at a = 0". Maximum slip for the oblate spheroid occurs at an orientation of 
roughly 30" while for the prolate spheroid it occurs at approximately 60". 

Figure 3 shows the variation of the perpendicular velocity component U, with 
orientation angle for the same conditions as in figure 2. Here a positive U, indicates that 
the spheroid is moving away from the wall. For small positive orientation angles of an 
oblate spheroid and close particle-wall spacings, the major axis of the spheroid is 
nearly touching the wall. This end of the spheroid experiences a large resistance to 
motion as can be seen from the large slip velocity in figure 2. The incoming flow strikes 
the spheroid nearly head-on causing it to pivot about the point closest to the wall in 
a counterclockwise direction. This results in a motion of the centre of the spheroid 
toward the wall as seen by the large negative value of U, shown in figure 3 near a = 
25". For a prolate spheroid this phenomenon may be seen in figure 3 for orientation 
angles which are large. In this case the spheroid pivots about its tip in a 
counterclockwise direction resulting in a motion of the centre of the spheroid away 
from the wall as evidenced by the large value of U, near a = 65" in figure 3. Another 
peculiar feature which may be seen in figure 3 is that U, changes sign and vanishes not 
only for a equal to 0" and 90" as expected from symmetry but also at a particular angle 
in between. This occurs when the velocity component perpendicular to the wall induced 
by the translatory motion of the spheroid parallel to the wall exactly balances the 
velocity component perpendicular to the wall induced by the rotational motion of the 
spheroid. 

The angular velocity o is shown in figure 4. The angular velocity is always positive 
indicating that with the shear flow directed along the x,-axis as shown in figure I ,  the 
spheroid tumbles about the x,-axis in a counterclockwise direction. For an oblate 
spheroid, the angular velocity is maximum at a = 0" and monotonically decreases to 
its minimum value at a = 90". For a prolate spheroid, the angular velocity is minimum 
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FIGURE 4. The angular velocity of a neutrally buoyant spheroid with 6 = 0.5 in shear flow; 
-, oblate spheroid; ---, prolate spheroid. 

at a = 0" and increases to its maximum at a = 90". The maximum angular velocity 
occurs when the semi-major axis of the spheroid lies perpendicular to the incoming 
shear flow since in this orientation the incoming flow exerts the largest torque on the 
particle. Also plotted is the angular velocity of an isolated spheroid ( H / c  = CQ) which 
is given by (3.5). Over most of the range of a the wall acts to reduce the angular velocity 
of the particle. However, when the major axis of the particle is oriented within roughly 
20" of the axis perpendicular to the wall, the wall actually enhances the angular velocity 
of the particle. This occurs because the translational motion of the particle parallel to 
the wall causes the particle to roll along the wall and this contribution to the angular 
velocity is in addition to the angular velocity induced by the shear flow in the absence 
of the wall. Unlike the velocity components U, and U,, which are strong functions of 
separation distance, the angular velocity w changes very little with separation distance 
in the range 1.1 < H / c  < cc especially when a is close to 20" for an oblate spheroid and 
70" for a prolate spheroid. 

Examination of figures 2 4  shows that the variation of the translational and 
rotational velocity components of a prolate spheroid with orientation angle a is 
qualitatively similar to that of an oblate spheroid having the same aspect ratio at an 
orientation of 90" -a. This is because while the angle between the major axis and the 
wall is OL for a prolate spheroid, it is 90"-a for an oblate spheroid. 

We next consider the trajectory of the particle in shear flow. The equations of motion 
of the particle in dimensionless form are: 

dx: - U, H da - w 
dt" U ,  c '  dt" Ux c '  dt" S' 

dx" 3 -  U, H (3.3a-c) 

where xT = xl/c,xz = x 3 / c  and t* = tS. 
To compute the three velocity components in equations (3.1) for a single separation 

distance and orientation angle using the boundary integral method requires 
approximately 1-10 minutes CPU time on an IBM 3081 computer, depending on 
particle-wall distance. Therefore it is impractical that all velocities needed to solve the 
differential equations (3.3) at each instant of time be computed by the boundary 
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(a) Oblate spheroid 

f f l c  a0 

1.1 0.0307 
1.3 0.0192 
1.5 0.0125 
1.75 0.0080 
2.0 0.0055 
2.5 0.0029 
c o o  

t'= 0.1 

0 2  u4 

0.0069 -0.0205 
0.0034 -0.0128 
0.0016 -0,0083 
0.0007 - 0.0057 
0.0004 -0.0037 
0.0002 -0.0019 
0 0 

(b) Prolate spheroid 
E = 0.1 

u6 

-0.0037 
-0.0013 
- 0.0009 
-0.0001 

0 
0 
0 

a0 

0.0991 
0.0584 
0.0382 
0.0244 
0.0166 
0.0087 
0 

Hlc 
1.1 
1.3 
1.5 
1.75 
2.0 
2.5 
cc, 

0 0  

0.0086 
0.0051 
0.0034 
0.0021 
0.001 3 
0.0005 
0 

a2 

- 0.00 19 
- 0.0006 
-0.0002 
- 0.0002 

0 
0 
0 

a4 

-0.0065 
-0.0039 
-0.0025 
- 0.00 18 
-0.0011 
- 0.0006 

0 

'6 

0.0010 
0.0007 
0.0003 
0.0002 
0 
0 
0 

TABLE 1. The coefficients of - 

B = 0.5 

a2 

0.0269 
0.0106 
0.0052 
0.0025 
0.0013 
0.0005 
0 

a4 

-0.0105 
- 0.0069 
- 0.0045 
-0.0029 
-0.0020 
-0.0010 

0 

F = 0.5 
- 

a0 0 2  a4 

0.0673 -0.0195 -0.0071 
0.0386 -0.0074 -0.0045 
0.0249 -0.0032 -0.0031 
0.0158 -0.0017 -0.0023 
0.0106 -0.001 1 -0.0015 
0.0055 0 -0.0006 
0 0 0 

- V,/U, in (3 .4~)  

-0.0020 
-0.0008 
-0.0003 

0 
0 
0 
0 

'6 

0.0014 
0.0004 
0.0002 
0.0002 
0 
0 
0 

integral method. Instead, we utilize interpolating functions in the form of a truncated 
Fourier series : 

TT 

- a, + a2 cos 201 + a4 cos 401 + as cos 6a, 

- - = b, sin 2a + b, sin 401 + b, sin 6a + b, sin Sa, 

"8 -- - 
urn 

v, 
urn 

(3.4a) 

(3.4b) 

(3.4c) 
w 
- = c0 + c2 cos 2a + c4 cos 401 + C, cos 6~( ,  
S 

where a,, b, and c, are unknown functions of the aspect ratio 6 and the particle-wall 
spacing H / c .  For a given H / c  the velocity components are computed by the boundary 
integral method at seven orientation angles and the coefficients a,, b, and c, are 
calculated using a least squares fit. Tables 1-3 list values of these coefficients for an 
oblate or prolate spheroid with aspect ratios 6 = 0.1 and 0.5 at selected values of H/c.  
Intermediate values of the difference between the coefficients at arbitrary H / c  and 
H/c+oo are obtained by interpolation using cubic splines on a log-log scale. This 
difference is then added to the value at H/c+co to obtain the value of the coefficient 
at any arbitrary H/c. By comparison with the values obtained directly by solving 
equations (3.1) the velocities calculated by equations (3.4) have an error of less than 
4 YO for both oblate and prolate spheroids. At H / c  = co the coefficients a,, b, = 0 for 
all n 3 0, co = i, c, = (b2-a2) / [2(b2+a2)]  and c, = 0 for n > 2. The differential 
equations (3.3) were solved numerically using a fourth-order Runge-Kutta procedure. 

Figure 5 shows the trajectories of the centre of a tumbling neutrally buoyant oblate 
or prolate spheroid in shear flow for two aspect ratios, t = 0.1 and 0.5. In all cases the 
spheroid begins its quasi-steady motion at the point XT = 0, x; = 1.25 with initial 
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(a) Oblate spheroid 
6 = 0.1 E = 0.5 

H l c  b2 b4 

1.1 0.02654 0.03424 
1.3 0.01341 0.01967 
1.5 0.00844 0.01282 
1.75 0.00488 0.008 14 
2.0 0.00310 0.00557 
2.5 0.00128 0.003 10 
c o o  0 

(b) Prolate spheroid 

b6 b8 

0.00544 0.001 17 
0.00195 0.00023 
0.00089 0 
0.00038 0 
0.00022 0 
0.00008 0 
0 0 

Hlc 
1.1 
1.3 
1.5 
1.75 
2.0 
2.5 
m 

6 = 0.1 

b, b* ‘ 6  b8 
-0.01345 0.013 16 -0.00249 0.00061 
-0.00674 0.00689 -0.00077 0.00011 
-0.00392 0.00422 -0.00032 0.00003 
-0.00226 0.00259 -0.00014 0.00001 
-0.00143 0.00171 -0.00007 0 
-0.00068 0.00087 -0.00002 0 

0 0 0 0 

TABLE 2. The coefficients of 

bz 
0.03692 
0.01790 
0.01007 
0.005 59 
0.003 48 
0.001 61 
0 

6 4  

0.02821 
0.013 56 
0.00792 
0.00468 
0.003 09 
0.001 57 
0 

b6 b8 
0.005 53 0.001 02 
0.001 54 0.000 18 
0.00057 0.00005 
0.00021 0.00001 
0.00010 0 
0.00003 0 
0 0 

E = 0.5 

bz b4 

-0.03209 0.02233 
-0.01496 0.01004 
-0.00833 0.00571 
-0.00463 0.00334 
-0.00284 0.00216 
-0.001 30 0.001 07 

0 0 

-&/Urn in (3.4b) 

b6 

- 0.004 80 
-0.001 18 
-0.00043 
-0.000 17 
-0.00008 
-0.00002 

0 

b8 
0.001 23 
0.000 17 
0.00006 
0.00002 
0 
0 
0 

(u) Oblate spheroid 
6 = 0.1 E = 0.5 

H / c  
1.1 
1.3 
1.5 
1.75 
2.0 
2.5 
00 

c0 

0.4847 
0.4897 
0.4928 
0.4953 
0.4967 
0.4982 
0.5 

C2 

0.4974 
0.4951 
0.4936 
0.4928 
0.4920 
0.4912 
0.4901 

c4 

0.0170 
0.0100 
0.0061 
0.0042 
0.0029 
0.0015 
0 

‘ 6  

0.0042 
0.0019 
0.0007 
0.0006 
0.0003 
0.0002 
0 

CO 

0.4600 
0.4746 
0.4822 
0.4885 
0.4921 
0.4956 
0.5 

C2 c4 

0.3453 0.0212 
0.3316 0.0109 
0.3232 0.0057 
0.3155 0.0036 
0.3112 0.0026 
0.3060 0.001 1 
0.3 0 

‘ 6  

0.0041 
0.0018 
0.0013 
0.0006 
0.0001 
0.0001 
0 

(b) Prolate spheroid 

€ = 0.1 E = 0.5 

H / c  
1.1 
1.3 
1.5 
1.75 
2.0 
2.5 
a3 

CO 

0.4938 
0.4964 
0.4974 
0.4986 
0.4987 
0.4993 
0.5 

c‘2 c4 ‘ 6  CO C2 

-0.4905 0.0063 -0.0019 0.4744 -0.3322 
-0.4908 0.0037 - 0.0009 0.4837 -0.3216 
-0.4908 0.0026 -0.0002 0.4888 -0.3153 
-0.4906 0.0015 -0.0001 0.4926 -0.3104 
-0.4903 0.0010 -0.0001 0.4951 -0.3073 
-0.4902 0.0005 0 0.4972 -0.3041 
-0.4901 0 0 0.5 -0.3 

TABLE 3. The coefficients of w / S  in (3 .4~)  

c4 

0.0163 
0.0081 
0.0047 
0.0029 
0.0016 
0.0008 
0 

‘6 

- 0.0042 
-0.0013 
-0.0002 
- 0.000 1 
- 0.0001 

0 
0 



Gravitational and zero-drag motion of a spheroid 275 

(4 I I i 
i i 1 

1.30 

X; 1.25 

1.20 

I I 1 1 
0 2.5 5.0 1.5 10.0 

1.3 

1.2 

1.1 

t 1 

(4 I I 1 1 

30" ao= 0" 150" 1.30 1 

x j  1.25 

1.20 

I I 1 1 I I  
0 2.5 5.0 7.5 10.0 

1.28 
(4 

* 1.25 
x3 

1.22 

0 10 20 30 40 

x ;  
FIGURE 5. Trajectories of the centre of a neutrally buoyant spheroid in shear flow (a) oblate, 6 = 0.5; 
(b) oblate, E = 0.1 ; (c) prolate, B = 0.5; (d )  prolate, t = 0.1. Coordinates non-dimensionalized by 
length of semi-major axis c.  
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FIGURE 6. Variation of the orientation angle of a neutrally buoyant spheroid in shear flow (a) oblate, 
E = 0.5; (b)  oblate, e = 0.1; (c) prolate, E = 0.5; (d)  prolate, E = 0.1. 
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orientation angle a,. For clarity the scale in the x$-direction has been greatly expanded. 
One notes that the wall has a strong influence on the trajectory of the particle. The 
spheroid centre does not move in a straight line as it would in unbounded flow. 
Although the velocity component perpendicular to the wall is zero when the spheroid 
axis is parallel or perpendicular to the wall, these positions cannot be maintained owing 
to the rotation. Therefore when the particle is translating parallel to the plane, it also 
drifts toward and away from the plane periodically. The lobes appearing in the curves 
are the result of the spheroid pivoting about its tip when it is in close proximity to the 
wall as explained earlier. For small aspect ratios the pivoting action is sharper and the 
lobes appear as spikes in figures 5(b) and 5(d). Figure 6 gives the corresponding 
orientation angle for the trajectories shown in figure 5. The angular velocity w is never 
zero as shown in figure 4, so the particle continually rotates in one direction. The sharp 
changes in orientation angle a seen in figure 6 (especially evident in figures 6(b) and 
6 ( d )  for e = 0.1) are also the result of the spheroid pivoting about its end. The 
trajectory of the particle centre and the period of the motion strongly depend on the 
body's aspect ratio, its initial orientation angle as well as its initial distance from the 
boundary. 

For a neutrally buoyant oblate or prolate spheroid in unbounded shear flow, the 
orientation angle satisfies the differential equation, Jeffery (1 922) : 

The solution of (3.5) is 

(3.5) 

Therefore the dimensionless period of a spheroid in unbounded shear flow is T: = 
T, S = 2n(a2 + b2)/(ab). Figure 7 shows the variation of the rotational period T of an 
oblate or prolate spheroid with t: = 0.1 and 0.5 as a function of the initial separation 
distance x; and orientation angle a,. The period is minimum when the particle is far 
from the wall and increases continuously (without limit) as the initial particle-wall 
spacing is decreased. For an oblate spheroid with 8 = 0.1 at a given initial distance 
from the wall, the period increases with increasing initial orientation from 0" to 90". 
For c = 0.5 the period decreases with increasing initial orientation angle. As expected 
the period becomes independent of a,, with increasing distance from the wall. For a 
prolate spheroid with e = 0.5 the period increases with increasing initial orientation 
angle. The variation of the period of a prolate spheroid having e = 0.1 with initial 
orientation angle is too small to be seen on the scale of figure 7. 

4. Spheroid settling under gravity adjacent to an inclined plane 

wall which is inclined at an angle 
Using (2.3), a force and torque balance on the particle yields 

We now consider the motion of a spheroid settling under gravity adjacent to a plane 
with quiescent fluid at infinity as shown in figure 8. 

bnpc[F:1 U, + FP U, + bF{ w] + $nab2@, - p )  g sin p = 0, (4.1 a)  

(4.1 b)  

Ti1 q+ T? U,+ bTLw = 0, (4.1 c) 
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FIGURE 7. Variation of the period T of a spheroid with initial separation distance x,* and orientation 
angle a,,; -, oblate spheroid; ---, prolate spheroid. 

\ 

FIGURE 8. Schematic diagram of a spheroid settling under gravity adjacent to a plane. 

where ps and p are the density of the particle and the fluid, respectively, and g is the 
acceleration due to gravity. These three equations may be solved simultaneously to 
yield the two translational components U, and U, and angular velocity w of the particle. 
In the Stokes flow limit, the settling of a spheroid adjacent to a wall inclined at an 
arbitrary angle ,!? may be completely described by a linear superposition of the 
solutions at ,8 = 0" and 90". Thus we need only consider these two special cases. 

The velocity components of the particle for p =  0", in which the plane is 
perpendicular to the direction of gravity, will be expressed as U:, U,3 and w3. The 
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1 .o 

0.8 

0.6 

FIGURE 9. The velocity parallel to the wall of a spheroid with t = 0.5 settling under a gravitational 
force acting in the same direction; -, oblate spheroid; ---, prolate spheroid. 

velocity components for /3 = 90°, where the plane is parallel to the direction of gravity, 
will be expressed as U:, U,l and d. The velocity U,3 = - U,l by the reciprocity relations 
(2.4). 

The translational velocity components U:, U i  and U i  for a spheroid settling under 
gravity having aspect ratio c = 0.5 are shown in figures 9-1 1, respectively, as a function 
of orientation angle a and particle-wall spacing H/c.  All three velocities are non- 
dimensionalized by the terminal velocity of an isolated spheroid in an unbounded 
fluid with the force of gravity acting parallel to its major axis. With this choice of U, 
the magnitude of the dimensionless velocities is always less than unity. The terminal 
velocity of an oblate spheroid settling with its axis of symmetry perpendicular to the 
direction of gravity is given by (Happel & Brenner 1967, p. 222) 

sin-’ [ 1/ 1 - e2] - ~ 

1 - 2  “ I  ’ U - _- (4.2a) 

where e = a/b. The terminal velocity of a prolate spheroid settling with its axis of 
symmetry parallel to the direction of gravity is given by 

U - -  (4.2b) 

where e = b/a. Also plotted in figures 9-1 1 are the limiting values of the various 
velocity components for an isolated spheroid (labelled H / c  = co) which may be 
obtained analytically. For an oblate spheroid 

U: U’ u: = 1 - 2F(4 cos* a, 
9 U, 4 

- - - - 1 - 2 ~ ( e )  sin’ a, 3 = F(c) sin 201, (4.3 a-c) 

while for a prolate spheroid 

U1 U3 

v, Q Y 
- G(e) sin 2a, (4.4 a-c) 3 = 1 -2G(e) sin’ a, -2 = 1 -2G(e)c0s2cc, -- - 
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FIGURE 10. The velocity perpendicular to the wall of a spheroid with t'= 

gravitational force acting in the same direction; -, oblate spheroid; --- 
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FIGURE 11. The velocity perpendicular to the wall of a spheroid with E = 0.5 settling under a 
gravitational force acting parallel to the wall; -, oblate spheroid ; ---, prolate spheroid. 

where 

(4.54 
1 ez/l-e2+(1-2e2)sin-' 2/1-c2 
2 - e z / l - - ~ ~ - ( ( 2 ~ ~ - 3 ) s i n - ~ . \ / l - e ~ '  

F(E) = -- 

1 + 4 1 - 2  
z/l -e2+(2-3e2)1n 

1 E 

- 4 4  1 - t.2 + 2(2 - e2) In 
2 

The angular velocities w1 and w3 are non-dimensionalized by Y/c and plotted in figures 
12 and 13. Both w1 and w3 vanish as H/c+oo.  The translational velocities U!, U,3 and 

(4.5b) G(s) = -- 
1 + dl -2. 
1-dl-2 

and 
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FIGURE 12. The angular velocity of a spheroid with e = 0.5 settling under a gravitational force acting 
parallel to the wall; -, oblate spheroid; ---, prolate spheroid. 
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FIGURE 13. The angular velocity of a spheroid with e = 0.5 settling under a gravitational force acting 
perpendicular to the wall; -, oblate spheroid; -- -, prolate spheroid. 

rotational velocity w' are even functions of a while U; and w3 are odd functions of a. 
Thus they are plotted only in the range between 0" and 90". In this range of a, U,l is 
always positive and U,3 is always negative indicating that their direction corresponds 
to the direction of the gravitational force. U,l is maximum at the orientation angle for 
which the cross-sectional area of the spheroid normal to x1 is minimum and decreases 
with decreasing distance from the wall. The same is true for the magnitude of U,3 except 
at close particle-wall spacings where the wall offers a great deal of resistance to motion 
when the semi-major axis of the particle is oriented nearly perpendicular to the wall. 
For 0 < a < go", Ui  is always positive for an oblate spheroid indicating that with the 
gravitational force acting in the xl-direction, the particle drifts away from the wall. In 
the same range of a, U,l is always negative for a prolate spheroid indicating that it 
moves toward the wall. The magnitude of U,l decreases with decreasing particle-wall 
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distance as the wall interaction becomes stronger. U,l changes very little with 
particle-wall spacing when the particle is oriented with its major axis nearly parallel to 
the wall. 

In figures 12 and 13, a positive angular velocity indicates counterclockwise rotation 
as shown in figure 8. In figure 12 the wall is oriented at = 90" so that the force of 
gravity acts in the x,-direction. When the major axis of the particle is oriented 
perpendicular to the wall, the angular velocity is positive indicating that the particle 
rolls along the wall as it settles. However, when the major axis is oriented parallel to 
the wall, the particle rotates in a clockwise direction as it settles. The clockwise rotation 
is the result of the couple induced by the pressure force in the gap between the particle 
and the wall which builds up on the leading half of the spheroid and is reduced on the 
trailing half. The angular velocity vanishes at the critical orientation of the particle 
where the two effects exactly balance. The angular velocity of the particle when the wall 
is oriented at p = 0" with the gravitational force acting in the negative x,-direction is 
shown in figure 13. For 0 < a < 90°, an oblate spheroid rotates in a counterclockwise 
direction while a prolate spheroid rotates in a clockwise direction as it settles. This 
occurs because for an oblate spheroid, the centre of the spheroid where the 
gravitational force acts lies to the left of the point on the surface of the particle closest 
to the wall, while for a prolate spheroid the centre lies to the right. As explained in the 
previous section, the translational and angular velocity components of a prolate 
spheroid at an orientation angle a vary qualitatively with a as the corresponding 
velocity components of an oblate spheroid at an orientation angle of 90"-a. 

We next consider the trajectory of a spheroidal particle settling under gravity 
adjacent to an inclined planar wall. The required values of the translational and 
rotational velocities at an arbitrary separation distance and orientation are interpolated 
in the same manner as in 53 for the motion of a neutrally buoyant particle in shear flow. 
For an oblate or prolate spheroid the translational and rotational velocity components 
are approximated by the truncated Fourier series : 

= A ,  + A ,  cos 201, (4.6a) u,l 
q 

- B, + B, cos 2a + B4 cos 4a, u,3 -- - 

- C, sin 201 + C, sin 4% + C, sin 6a, u,l 
Y 

c- - 

wlc -- - D, + D, cos 2a + D,  cos 401, 
u, 

w3c 
~ = E, sin 2a + E4 sin 4a + E6 sin 6a, 
Y 

(4.6b) 

( 4 . 6 ~ )  

(4.6d) 

(4.6e) 

where A,, B,, C,, D ,  and En are functions of aspect ratio t: and particle-wall spacing 
H/c. As H/c+oo, comparison with (4.3) and (4.4) shows that A,, B,, C, = 0 for 
n > 2 and D,, En = 0 for n 2 0. For an oblate spheroid 

A,  = B, = 1 -F(c), -A,  = B,  = - C, = F(E), (4.7 u-b) 

while for a prolate spheroid 
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(a) Oblate spheroid (b) Prolate spheroid 

E = 0.1 E = 0.5 FI = 0.1 6 = 0.5 
- 

H l c  A ,  A, A0 A, A0 4 A0 4 
1.1 0.5678 -0.1674 0.5466 -0.0998 0.7093 0.1699 0.6194 0.0967 
1.3 0.6105 -0.1549 0.6111 -0.0823 0.7324 0.1622 0.6748 0.0809 
1.5 0.6415 -0.1516 0.6554 -0.0747 0.7483 0.1589 0.7117 0.0743 
1.75 0.6710 -0.1477 0.6954 -0.0703 0.7626 0.1565 0.7442 0.0702 

5.0 0.7912 -0.1403 0.8541 -0.0649 0.8176 0.1530 0.8690 0.0638 
2.0 0.6930 -0.1453 0.7254 -0.0679 0.7734 0.1554 0.7687 0.0678 

03 0.8597 -0.1403 0.9378 -0.0622 0.8473 0.1527 0.9366 0.0634 

TABLE 4. The coefficients of U : / q  in ( 4 . 6 ~ )  

where F(E) and G(e) are given by (4.5). The coefficients appearing in (4.6) are tabulated 
for selected values of H/c  and E in tables 4-8 for both oblate and prolate spheroids. 

The equations of motion of a particle settling under gravity adjacent to a planar wall 
inclined at an angle p (see figure 8) in dimensionless form are 

1 dx* = zsinp+-cosp,  u,3 
dt* q q 

- -sinp+-cosp, 
dt* q q 
da wlc w3c -- - -sinp+-cosp, 
dt* q u, 

-- dx* Ui . u,3 

(4.9 a) 

(4.9 b) 

(4.9 c) 

where xT = x, /c ,  x: = x,/c and t* = q t /c .  The system of differential equations was 
solved numerically using a fourth-order Runge-Kutta procedure. 

Figure 14 shows the trajectories of a spheroid falling adjacent to an inclined planar 
wall. Solutions are presented for an initial particle-to-wall spacing x,* = 6 and various 
values of initial orientation angle a,,. The initial values of XT were chosen arbitrarily. 
For the sake of clarity the scale in the x:-direction is greatly magnified. Figure 14(a) 
shows the trajectories of an oblate spheroidal particle of aspect ratio B = 0.5 settling 
adjacent to a planar wall inclined at p = 85". A curious feature is that the spheroid 
eventually reaches the same equilibrium position from the wall regardless of the 
starting position. For some initial orientations the particle moves monotonically 
toward the equilibrium position while for others the particle moves toward and then 
away from the wall until it reaches the final position. A similar behaviour is also 
evident for a prolate spheroid having the same aspect ratio and wall inclination angle 
and for an oblate spheroid with aspect ratio e = 0.1 and wall inclination p = 75". In the 
interest of saving space, these figures are not presented here but may be obtained from 
the authors upon request. For small inclination angles, the spheroid monotonically 
approaches the wall as shown in figure 14(b) for an oblate spheroid having an aspect 
ratio B = 0.1 settling next to a wall inclined at ,8 = 30". For this case, it is possible that 
an equilibrium position may still exist very close to the wall for x,* < 1.1 where it is 
computationally prohibitive to obtain solutions using the present theory. For large 
wall inclination angles, no equilibrium position exists as is evident in figure 14(c). 

To give a full picture of the motion, the same trajectories described in figure 14 are 
plotted in terms of the separation distance and the orientation angle relative to the wall 
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(a) Oblate spheroid 

E = 0.1 B = 0.5 
~~~ 

Hlc Bo 4 B4 

1.1 0.330 0.061 -0.022 
1.3 0.397 0.093 -0.010 
1.5 0.448 0.108 -0.006 
1.75 0.498 0.119 -0.003 
2.0 0.537 0.125 -0.002 
5.0 0.721 0.138 0 
a, 0.860 0.140 0 

(b) Prolate spheroid 

€ = 0.1 

Hlc 4 4 
1.1 0.577 -0.103 
1.3 0.622 -0.126 
1.5 0.653 -0.136 
1.75 0.680 -0.142 
2.0 0.701 -0.146 
5.0 0.788 -0.152 
03 0.847 -0.153 

B4 
-0.012 
-0.004 
-0.002 
-0.001 

0 
0 
0 

TABLE 5. The coefficients of 

Bo 4 
0.234 -0.028 
0.333 0.010 
0.405 0.029 
0.472 0.041 
0.525 0.047 
0.767 0.061 
0.938 0.062 

6 = 0.5 

4 
-0.021 
- 0.009 
-0.004 
- 0.002 
- 0.001 

0 
0 

B, Bz 
0.334 0.032 
0.434 -0.015 
0.500 -0.033 
0.561 -0.045 
0.607 -0.051 
0.802 -0.063 
0.937 -0.063 

U : / q  in (4.66) 

B* 
- 0.023 
-0.007 
- 0.004 
- 0.002 
-0.001 

0 
0 

(a) Oblate spheroid 

8 = 0.1 B = 0.5 
~ 

H l c  c, c4 

1.1 -0.122 0.011 
1.3 -0.130 0.006 
1.5 -0.133 0.003 
1.75 -0.136 0.002 
2.0 -0.137 0.001 
5.0 -0.140 0 
co -0.140 0 

(b) Prolate spheroid 

€ = 0.1 

Hlc c, c4 

1 . 1  0.145 0.003 
1.3 0.149 0.002 
1.5 0.150 0.001 
1.75 0.151 0 
2.0 0.153 0 
5.0 0.153 0 
03 0.153 0 

c, 
0.003 
0.001 
0 
0 
0 
0 
0 

c2 c4 ‘ 6  

-0.0422 0.0104 0.0026 
-0.0513 0.0045 0.0007 
-0.0556 0.0022 0 
-0.0581 0.0012 0 
-0.0595 0.0007 0 
-0.0610 0.0001 0 
-0.0622 0.0 0 

E = 0.5 

cti 
-0.0011 
- 0.0004 

0 
0 
0 
0 
0 

‘2 c4 ‘6 

0.0467 0.0079 -0,0021 
0.0547 0.0031 -0.0005 
0.0581 0.0015 -0.0002 
0.0603 0.0008 -0.0001 
0.0614 0.0004 0 
0.0633 0 0 
0.0634 0 0 

TABLE 6. The coefficients of - U;/V ,  in (4 .6~)  
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(a) Oblate spheroid 

e = 0.1 

H l c  Do Dz 
1.1 0.0332 0.1189 
1.3 0.0222 0.1024 
1.5 0.0157 0.0919 
1.75 0.0108 0.0819 
2.0 0.0077 0.0739 
5.0 0.0006 0.0330 
c o o  0 

D4 

0.0174 
0.0103 
0.0070 
0.0048 
0.0034 
0.0003 
0 

DO 
0.0140 
0.0076 
0.0046 
0.0027 
0.0017 
0 
0 

E = 0.5 

DZ 
0.0465 
0.0328 
0.0250 
0.0189 
0.0148 
0.0026 
0 

(b) Prolate spheroid 

E = 0.1 E = 0.5 

f f l c  Do DZ D4 DO D, 
1.1 0.0223 -0.0674 0.0111 0.0329 -0.0916 
1.3 0.0131 -0.0531 0.0056 0.0195 -0.0719 
1.5 0.0087 -0.0455 0.0036 0.0131 -0.0617 
1.75 0.0057 -0.0391 0.0023 0.0086 -0.0532 
2.0 0.0039 -0.0345 0.0015 0.0059 -0.0471 
5.0 0.0003 -0.0144 0.0001 0.0003 -0.0200 
c o o  0 0 0 0 

TABLE 7. The coefficients of wlc/q in (4.6d) 

D, 
0.0064 
0.0029 
0.0015 
0.0009 
0.0005 
0 
0 

D* 
0.0139 
0.0067 
0.0040 
0.0025 
0.0017 
0.0001 
0 

(a) Oblate spheroid 

E = 0.1 E = 0.5 

H / c  E, 
1.1 0.149 
1.3 0.139 
1.5 0.129 
1.75 0.118 
2.0 0.108 
5.0 0.0492 
c o o  

E4 
0.017 
0.012 
0.009 
0.006 
0.004 
0.0003 
0 

(6) Prolate spheroid 

8 = 0.1 

E6 

0.003 
0.001 
0.001 
0.001 
0 
0 
0 

EZ 
0.0623 
0.0466 
0.0361 
0.0277 
0.0218 
0.0039 
0 

E4 
0.0082 
0.0039 
0.0020 
0.001 1 
0.0007 
0 
0 

E = 0.5 

EB 
0.0015 
0.0004 
0 
0 
0 
0 
0 

H / c  

1.1 
1.3 
1.5 
1.75 
2.0 
5.0 
03 

E2 
-0.091 1 
- 0.0774 
-0.0679 
-0.0590 
- 0.0522 
-0.0217 

0 

E4 
0.0132 
0.0075 
0.0049 
0.003 1 
0.0021 
0.0001 
0 

E6 

-0.0026 
-0.0009 
-0.0004 
-0.0002 
-0.0001 

0 
0 

Ez 
- 0.1284 
-0.1072 
-0.0934 
- 0.0809 
-0.0716 
-0.0301 

0 

E4 
0.0184 
0.0095 
0.0058 
0.0036 
0.0024 
0.0002 
0 

E, 
-0.0038 
- 0.00 12 
- 0.0005 
- 0.0002 
- 0.0001 

0 
0 

TABLE 8. The coefficients of w 3 c / q  in (4.6e) 
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FIGURE 14. Trajectories traced by the centre of an oblate spheroid settling under gravity adjacent 
to an inclined plane from the initial position x: = 6.  (a) B = 0.5, /3 = 85"; (b) E = 0.1, p = 30"; 
(c) E = 0.1, /3 = 81". Coordinates non-dimensionalized by length of semi-major axis c. 
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FIGURE 15. Trajectories of an oblate spheroid settling under gravity adjacent to an inclined plane from 
the initial position x: = 6 in terms of the separation distance and the orientation angle relative to the 
wall. (a) E = 0.5, #I = 85'; (b) E = 0.1, #I = 30'; (c) E = 0.1, p = 81"; -, trajectories; ---, constant 
elapsed time ; . , equilibrium position. Dimensionless variables defined following (4.9). 

in figure 15. Figure 15(a) shows that all the curves (solid lines) coalesce to the same 
point indicating that for a given particle geometry and wall inclination angle, both the 
final equilibrium separation distance and the particle orientation angle are independent 
of the initial position. In figure 15(b) the curves appear to be converging together 
although it is not clear whether they coalesce to the same point. The dashed lines in 
figure 15 represent the positions for which the particle would take the same amount of 
time to reach if it were released at x: = 6 but with different initial orientations. When 

10-2 
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(u) E = 0.1 

Oblate spheroid Prolate spheroid 

P(deg.1 x,* 
70 1.10 
71 1.22 
72 1.32 
73 I .44 
74 1.62 
75 1.85 
76 2.16 
77 2.64 
78 3.46 
79 5.20 
80 12.2 
80.6 cc 

(b) 6 = 0.5 

P (deg.1 .g 
80 1.13 
81 1.27 
82 1.45 
83 1.77 
84 2.34 
85 3.70 
86 18.7 
86.2 cc 

(deg.1 
62.0 
61.5 
60.4 
59.5 
58.6 
57.5 
56.5 
55.4 
54.4 
53.4 
52.5 
51.9 

a (deg.1 
57.3 
56.0 
54.6 
52.6 
51.2 
49.5 
48.0 
47.8 

xt CY (deg.) 

1.40 148.2 
2.34 145.3 
5.76 143.4 
co 142.7 

x,* a (deg.) 

1.30 145.6 
1.79 142.7 
3.07 139.9 

24.1 138.0 
co 137.9 

TABLE 9. The separation distance x,* and particle orientation angle a at the equilibrium position for 
a spheroid settling under gravity adjacent to a plane inclined at angle j3 

the particle has reached the equilibrium position it translates parallel to the wall 
without rotation at a constant velocity. In this position, the gravitational component 
perpendicular to the wall is exactly balanced by the lift force due to the parallel motion 
and simultaneously the torque due to the parallel motion is exactly balanced by the 
torque from the pressure distribution on the surface as explained earlier. If the particle 
is slightly displaced perpendicular to the wall from the equilibrium position, a restoring 
force acts to return it to the equilibrium position. Moreover, if the equilibrium 
orientation of the particle is slightly disturbed, a restoring torque acts to return the 
particle to its equilibrium orientation. Thus the particle is in stable equilibrium. The 
equilibrium position depends on the aspect ratio of the particle and the inclination angle 
of the wall. If the inclination angle of the wall /3 is decreased, the component of gravity 
perpendicular to the wall increases and thus the equilibrium position moves closer to 
the wall where the lift force is greater. Table 9 shows the final separation distance and 
orientation angle for selected inclination angles /3 for an oblate or prolate spheroid 
having aspect ratios E = 0.1 and 0.5. As the inclination angle approaches the 
asymptotic value denoted by p,, the equilibrium separation distance xt  becomes 
infinite. The asymptotic values of a and /3 shown as the last entry on table 9 were 
obtained from analytic expressions derived in Appendix A using the weak interaction 
theory of Wakiya (1959). No equilibrium solutions exist for /3, < /3 < 90". In this 
range of /I, the particle rotates and asymptotically approaches a, as shown in figure 
15(c). The particle may move initially toward or away from the wall depending on the 
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55 - 
I I I I 

6 

FIGURE 16. Asymptotic equilibrium orientation angle; -, oblate spheroid; 
---, prolate spheroid. 

initial orientation angle a. (see figure 14c). After reaching a,, the particle drifts away 
from the wall without rotation. 

5 .  Concluding remarks 
In this paper, the velocities and trajectories of a neutrally buoyant spheroidal 

particle in shear flow in the vicinity of a planar wall and a non-neutrally buoyant 
spheroidal particle settling under gravity adjacent to an inclined plane have been 
computed utilizing the solutions of the resistance tensor obtained by Hsu & Ganatos 
(1989) using the boundary integral method. The method has been successful in 
producing highly accurate solutions down to particleewall gap widths of 0 . 1 ~  with 
modest computational resources. 

In closing, the authors wish to mention two extensions of the present theory 
currently in progress at The City College of New York. One extension involves an 
arbitrary particle in the vicinity of a planar boundary with a circular hole. The other 
involves an arbitrary particle in a parallel walled channel. 

This research was supported by a Research Initiation Grant from the National 
Science Foundation, no. CME81-05914 and by a grant from The City University of 
New York PSC-CUNY Research Award Program, no. 663310. Their support is 
gratefully acknowledged. The authors also wish to thank The City University of New 
York Computer Center and The City College of New York Computer Center for the 
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Appendix A 
In this Appendix, asymptotic expressions are presented for the equilibrium particle 

orientation angle and wall inclination angle for a spheroidal particle settling under 
gravity adjacent to an inclined plane. The expressions are based on the method of 
reflections theory of Wakiya (1959). 

At the equilibrium position, the particle translates parallel to the wall without 
rotation and maintains a constant distance from the wall. Setting V, = w = 0 in (4.1) 
yields 

6npc F? U, + $nab2@, - p) g sin p = 0, 
6npc F 2  U, - $nab2@, - p) g cos /3 = 0, 

T> U, = 0. 

(A la)  

(A 1b) 

(A 1 4  
Dividing (A 1 a) by (A 1 b) gives 

F tl 
tanp = -2 

F$' 
and (A 1 c) requires 

T $  = 0. 

At large particle-wall spacings, asymptotic expressions for the force and torque 
coefficients are presented by Wakiya (1959). The leading terms of these asymptotic 
expansions are 

8 cos2a 3 1+sin2a 
3c K+a2L, K+b2L, 2H K+a2 L, 

Fti = _ _  [ + sin2a 1 1 1 . 4  

2 - 1 + cos2 a 
+ K+b2L, K+a2L,sinaa+b2L,cos2a 

sin a cos a, (A 5 )  
1 ] [ , + l ( l + s i n 2 a  1+cos2a 

2H K+a2L,+ K+b2L, 

where 

3(a2 - b2) 
16bH2(a2L, + b2L,) 

T $ = -  [Fil cos 2a - i F 2  sin 2 4 ,  

(A 7a-c) 
(a2+s) A' (b2+s) A'  

and A = (a2+s)+(b2+s). (A 8) 
Substitution of (A 6) into (A 3) yields 

2 Ftl 
tan2a, = -2. 

3 F 3  

Elimination of the force coefficients between (A2) and (A9) provides a simple 
relationship between the asymptotic equilibrium particle orientation angle and the wall 
inclination angle 

Finally, substituting (A 4) and (A 5)  into (A 9) and dropping terms 0(1/H) leads to an 
explicit expression for the asymptotic equilibrium orientation angle solely in terms of 
particle aspect ratio E :  

tanp, = -:tan2a,. (A 10) 

cos 2a, = - A  f (A2 + 3)$, (A 11) 



where 
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E 

FIGURE 17. Asymptotic equilibrium wall inclination angle; -, oblate spheroid; 
___ , prolate spheroid. 

2K+ a2L, + b2L3 
A =  

a2L,-b2L3 

In (A 11) the positive sign is used for a prolate spheroid and the negative sign is used 
for an oblate spheroid. 

Figure 16 shows a plot of the asymptotic equilibrium orientation angle a, as a 
function of particle aspect ratio E .  The corresponding asymptotic equilibrium wall 
inclination angles are shown in figure 17. In both figures, the solid curve is for an oblate 
spheroid and the dashed curve is for a prolate spheroid. For an oblate spheroid located 
far from the wall having an aspect ratio of zero (i.e. a flat disk) the equilibrium wall 
inclination angle is 78.5" with a corresponding particle orientation angle of 53.5". As 
the particle aspect ratio is increased to unity (i.e. as the particle becomes spherical), the 
equilibrium wall inclination angle approaches 90" and the particle orientation angle 
approaches 45". Of course, the particle orientation angle has no significance for a 
spherical particle. For a prolate spheroid located far from the wall with an aspect ratio 
of zero (i.e. a rod-like object), the equilibrium wall inclination angle is 70.7" with a 
corresponding particle orientation angle of 148.8'. As the aspect ratio is increased to 
unity, the equilibrium wall inclination angle approaches 90" and the particle orientation 
angle approaches 135'. 

As shown in table 9, at closer particle-wall spacings, all equilibrium solutions lie 
above the two limiting curves in figure 16 and below the two limiting curves in figure 
17. Thus for a given particle aspect ratio, there is a range of wall inclination angles, 
p, < ,8 < 90', where the wall is nearly vertical and no equilibrium solutions exist. 
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